文章目录
  1. 1. 描述
  2. 2. 题意
  3. 3. 分析
  4. 4. 题解

描述

455. Assign Cookies

Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie. Each child i has a greed factor gi, which is the minimum size of a cookie that the child will be content with; and each cookie j has a size sj. If sj >= gi, we can assign the cookie j to the child i, and the child i will be content. Your goal is to maximize the number of your content children and output the maximum number.

Note:
You may assume the greed factor is always positive.
You cannot assign more than one cookie to one child.

Example 1:

1
2
3
4
5
6
7
8
9
Input: [1,2,3], [1,1]
Output: 1
Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3.
And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content.
You need to output 1.

Example 2:

1
2
3
4
5
6
7
8
9
Input: [1,2], [1,2,3]
Output: 2
Explanation: You have 2 children and 3 cookies. The greed factors of 2 children are 1, 2.
You have 3 cookies and their sizes are big enough to gratify all of the children,
You need to output 2.

题意

假设你是一位很赞的家长想要给孩子一些饼干。但是,你只能至多给每个孩子一个饼干。孩子i的贪婪因子为gi,意思是他所满意的饼干的最小尺寸;每一个饼干j的尺寸为sj。如果sj >= gi,我们就可以把饼干j分给孩子i,然后孩子i会很满意。你的目标是最大化分到饼干的孩子的个数。

注意:

可以假设贪婪因子都是正数。
不可以为一个孩子分配多个饼干。

分析

贪心算法

题解

[C/C++]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
int cmp(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
int findContentChildren(int* g, int gSize, int* s, int sSize) {
int i = gSize - 1;
int j = sSize - 1;
int ret = 0;
qsort(g, gSize, sizeof(int), cmp);
qsort(s, sSize, sizeof(int), cmp);
while(i >= 0 && j >= 0){
if(s[j] >= g[i]){
j--;
ret++;
}
i--;
}
return ret;
}

[Python]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution(object):
def findContentChildren(self, g, s):
"""
:type g: List[int]
:type s: List[int]
:rtype: int
"""
i, j = len(g) - 1, len(s) - 1
g, s = sorted(g), sorted(s)
ret = 0
while min(i, j) >= 0:
if s[j] >= g[i]:
ret += 1
j -= 1
i -= 1
return ret

文章目录
  1. 1. 描述
  2. 2. 题意
  3. 3. 分析
  4. 4. 题解